Exemplar Problem Trigonometric Functions

23. If a cos2 θ + b sin 2 θ = c has a and β as its roots, then prove that tan a + tan β = 2b/(a + c) [Hint: Use the identities $\cos 2\theta = ((1 - \tan^2 \theta)/(1 + \tan^2 \theta) \text{ and } \sin 2\theta = 2\tan \theta/(1 + \tan^2 \theta)]$ Solution: According to the question, $a \cos 2\theta + b \sin 2\theta = c$ α and β are the roots of the equation. Using the formula of multiple angles, We know that, $\cos 2\theta = \frac{1-\tan^2\theta}{1+\tan^2\theta} \text{ and } \sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta}$ $\therefore a\left(\frac{1-\tan^2\theta}{1+\tan^2\theta}\right) + b\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) - c = 0$ $\Rightarrow a(1 - \tan^2 \theta) + 2b \tan \theta - c(1 + \tan^2 \theta) = 0$ \Rightarrow (-c - a)tan ² θ + 2b tan θ - c + a = 0 ...(i) We know that, The sum of roots of a quadratic equation, ax 2 + bx + c = 0 is given by (-b/a) Therefore, $\tan \alpha + \tan \beta = -2b/-(c + a) = 2b/(c + a)$ Hence, $\tan \alpha + \tan \beta = 2b/(c + a)$